
www.manaraa.com

Case Study of Feature Location Using Dependence Graph*

Kunrong Chen, Václav Rajl ich
Department of Computer Science

Wayne State University
Detroit, MI 48202 USA
rajlich@cs.wayne.edu

Abstract

Software change requests are often formulated as
requests to modify or to add a specific feature or
concept. To implement these changes, the features or
concepts must be located in the code. In this paper, we
describe the scenarios of the feature and concept
location. The scenarios utilize a computer-assisted
search of software dependence graph. Scenarios are
demonstrated by a case study of NCSA Mosaic source
code.

1. Introduction

In software maintenance and evolution, change
requirements are often formulated as requests to modify
or to add specific program concepts or features [2, 26].
An example of such a request is “Add a new external
viewer to Mosaic web browser” . Before any actual
change can be made to the system, software
programmers must locate the implementation of the
concepts (“external viewer” ) in the source code.

Concept location is a process that maps domain
concepts to the software components. The input is the
maintenance request, expressed in natural language and
using the domain level terminology. The output of the
mapping is a set of components that implement the
feature or concept, see Figure 1. Feature or concept
location is relatively easy in small systems, which the
programmer full y understands. For large and complex
systems, it can be a considerable task.

The diff iculty of feature location is caused by several
factors. One is that the input and output of the location
process belong to different levels of abstraction: the
input is in domain level and the output is in
implementation level, see Figure 1. To make the
translation from one level to another, extensive

knowledge is required, including domain knowledge,
programming knowledge, knowledge of algorithms and
data structures, knowledge of the software components
and their interactions, etc. This knowledge is hard to
formalize and the programmer who has this knowledge
must participate in the location process.

Figure 1. Concept location process

Another factor is the high cost of comprehension of
large legacy systems, which makes a full comprehension
of the program impractical and unnecessary [5, 12]. The
programmers must limit the scope of their investigation
and comprehend only parts, while making sure that the
comprehension is suff icient for the maintenance task.
They need a scenario that divides the comprehension
into steps and gives feedback from each step. The
feedback will help them to decide whether they are on
the right track. This paper presents such a process.

We present a computer-assisted search process, with
different and alternating roles for the computer and for
the programmer. The process belongs to the category of
“ Intelligent Assistance” as advocated by Brooks [3] who
claimed that “ intelligence amplifying systems can, at
any given level of available systems technology, beat AI
systems. That is, a machine and a mind can beat a mind-
imitating machine working by itself.” When dealing
with feature location, we are convinced that a
programmer assisted with tools can achieve more than a
totall y automated feature location tool.

Section 2 of the paper describes the dependence
graph used for feature location. Section 3 investigates

* ) This research was partiall y supported by NSF grant #
CCR-9803876

Domain level request

Concept location

Components implementing concept

Copyright 2000 IEEE. Publi shed in the Proceedings of IWPC'00, IEEE Computer Society Press, Los Alamitos, CA, ISBN 0-7695-0656-9, pp. 241 -
249.  Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact:  Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA.



www.manaraa.com

the theoretical aspects of the feature location scenarios.
A case study of NCSA Mosaic software system is
presented in section 4. Section 5 contains the references
to the other work. Section 6 contains conclusions and
future work. The Appendices present detail s of the case
study.

2. Abstract System Dependence Graph

In [18], procedure dependence graph (PDG) was
introduced. PDG is a graph representation of a
procedure where vertices are statements or regions of
the code. Data dependence edges represent possible
flow of data in a procedure. Control dependence edges
represent conditions on which a statement or region
depends [10]. Every procedure has a special entry vertex
representing the entry of the procedure. The control and
data flow information is useful for data flow analysis,
data flow testing, sli cing, etc. [6]

A system dependence graph (SDG) [9, 10] is made
up of several procedure dependence graphs. Additional
mechanisms are defined to deal with function call and
parameter passing. A call edge is added to connect the
call and definition of a procedure. Algorithms are
developed to construct SDG or PDG from a program [6,
7, 8, 9, 10, 18].

When dealing with feature location, the programmer
usually does not need access to the statement level
information. A higher level of abstraction of the
program is more helpful. We propose an abstract system
dependence graph (ASDG) that can be constructed
using a subset of the information of the SDG. The fact
that ASDG is a subset of SDG guarantees that the
algorithms used to construct SDG can be used to
construct ASDG also.

In the C language, the ASDG consists of vertices that
represent    components,   i.e.    functions    and    global

variables. Function call is represented by call edge and
data flow edge represents flow of data from a function
to a global variable and vice versa. Formally, we define
ASDG in the following way: Let C be the set of
components in the software, and C = F ∪ G where F is a
set of functions and G is a set of global data. For d,e ∈
C, edge <d,e> denotes a dependence of component d on
e. If d, e ∈ F then <d,e> is call edge, if d ∈ G or e ∈ G,
then <d,e> is data flow edge. An ASDG is a set D of
dependencies in the system.

The set of all components used in D is defined as
comp(D) = { e | there exists d, such that <e,d> ∈ D or
<d,e> ∈ D} . The neighbors of a vertex d are defined as
neigh(d) = { <e,d> | there exists e such that <e,d> ∈ D}
∪ { <d,f> | there exists f such that <d,f> ∈ D} .  Please
note that we use the notation of [15, 21] for graphs.

An example of ASDG and its source code are in
figure 2.

3. Feature Location Scenarios

In each step of the search, one component is chosen
for visit. All visited components and their neighbors
constitute a search graph [4, 17]. At the beginning, the
search graph contains only the starting component. Each
visit to a component expands the search graph, and the
process continues until all the components
implementing the feature or concept are located.

The search graph is the part of the ASDG that was
visited during the search. There is always one active
component selected for the next step. Formally, S is a
search graph if and only if there exists d ∈ comp(S)
such that s<d> ∈ S (d is selected component) and (S -
s<d>) ⊂ D.

The tasks related to the search are divided into the
programmer's tasks and the tool's tasks, see Figure 3.

Figure 2. A sample program and its ASDG

int g;
main() {
  int a=2;
  a = foo1(a);
  foo2();
  foo3();
}

int foo1(int a) {
  g = 3;
  return g+a;
}

void foo3() {}

void foo2() {
  int a = 2;
  foo4(a);
  a = foo5();
}

void foo4(int a) {
  g += a;
}

int foo5() {
  return g;
}

main

foo2 foo3

foo5

foo1

foo4

g

         : call edge

         : data flow edge

         : function node

         : global variable node



www.manaraa.com

The programmer’s role is to make decisions that
direct the search. In particular, the programmer has to do
the following:

Locate starting component: The assumption is that
at the beginning, little is known about the system. The
starting point is often the top component, i.e. function
main(), because the top component summarizes all the
requirements  of  the entire system. Other possible
starting points for the search are the results of a dynamic
analysis [24], or a component whose name is similar to
the concept sought [1], or a randomly picked
component.

Choose a component for visit: In every step, one
component is selected for a visit and expansion of the
search graph. The programmer explores the source code,
dependence graph, and documentation, in order to
understand the component and decide whether if it is
relevant or unrelated to the feature.

Check if goal is reached: The programmer checks
whether all components dealing with the feature have
been found.

The supporting software tools do the following tasks:
Extract dependence graph of the system:

Dependence graph is extracted from the source code by
the program analyzer. Because the source code does not
change during the feature location process, the analyzer
is invoked only at the beginning.

Update the search graph: After the programmer
visited a component, the tool will add it to the search
graph. Based on the search graph, the programmer can
backtrack, undo, or redo some of his/her previous
operations.

The scenario of a feature location is a sequence of
search graphs S1, S2, … Sn, which starts with a single-
component search graph and ends with the feature
located. At the beginning of the search, S1 = { s<t>} .

If a step is not a backtracking one, the selected
component will be investigated and the search graph

will expand.  Formally, Si+1 = (Si – s<c>) ∪ {m, s<d>}
where m ∈ neigh(c) and either m = <c,d> or m = <d,c>.

If the step is a backtracking step, that means current
search direction is not promising and the user returns to
a previously visited component. More formally, for
backtracking step, Si+1 = (Si - s<c>) ∪ s<d> where d ∈
comp(S).

When programmer visits a component, he/she
decides whether the component is related to the feature
and whether to expand the search graph. There are
several strategies of search graph expansion:

Top-down strategy [19, 20] expands search graph
by called functions. The scenario starts with a function
main() that summarizes the requirements for the whole
program. If the sought functionality is not implemented
directly there, the programmer recursively visits called
functions until the desired functionality is found.

Bottom-up strategy is the opposite of top-down
strategy and expands the search graph by call ing
functions.

Backward data flow strategy is employed when
functionality of the system depends on specific values in
specific variables. The programmer is searching for the
origin of the values and visits the variables or functions
that provide those values.

Forward data flow strategy is the opposite and the
programmer is searching for the destination of the
values.

The search is guided by the programmer's knowledge
of the semantics of the components already visited. It
can be divided into several subgoals.

Instead of direct search for a specific feature, the
programmer searches for another closely related feature
that is easier to find, and at the same time it is related in
a predictable way to the feature searched. An example
of this is in our case study.

.

No

YesYes

No

YesProgrammer’s

Tool’s work

Figure 3. Feature location as a computer-assisted search

Visit
the
node

Locate
starting
node

Choose
node for
expanding

Check if
goal state is

reached?
Begin End

Dependence graph               Search graph

Update the
search graph

Graph layout
algorithm

Node
relevant?

Expand the
search graph



www.manaraa.com

4. Case Study

As a part of our research, we conducted a case study
based on NCSA Mosaic web browser for the X Window
System Version 2.5 [16]. The change requirement was
to add a new audio type to Mosaic. The feature location
task was to find how Mosaic deals with video or audio
files and to locate all components that manage file type
and processor registration. As the first task, we had to
understand the domain and its terminology.

Domain understanding: NCSA Mosaic uses the
term “external viewer” for a program that Mosaic call s
to view file formats it does not support internall y, such
as image or audio files. Mosaic browser retrieves
information from two kinds of servers, leading to two
different algorithms. One kind of server tell s the
browser the MIME (Multipurpose Internet Mail
Extensions) type of the transferred data. MIME is an
Internet standard, which is used to specify the type of
the object being transferred  across  the Internet.  Mosaic

menubar_cb(…)

XtVaGetApplicationRe
sources()

main( )

mo_do_gui()

HTFileInit()

HTLoadTypes
ConfigFile()

HTFormatInit()

HTReInit()

XmxCallback(menubar_cb)

mo_re_init_formats()

resources Rdata

Two macros for global mapping:
 GLOBAL_EXTENSION_MAP
 GLOBAL_TYPE_MAP

Six global variables relevant to type processing

HTSetPre
sentation()

HTSetS
uffix()

HTLoadExtensio
nsConfigFile()

mo_open_initial_window()

fire_er_up()

XmxCallback(fire_er_up)

mo_open_window()

mo_make_window()

mo_open_window_internal()

mo_fill_window() mo_open_another_window()

mo_open_another_window_internal()

Environmental
variable:
    HOME

         : call edge

         : data flow edge

         : function node

         : global variable node

         : located component

Figure 4. Search graph of Mosaic



www.manaraa.com

uses "mailcap" file to specify the external viewer for the
file. A mailcap file is a configuration file that maps file
types to external viewers. One line in an example
mailcap file looks li ke

video/mpeg; mpeg_play %s
where “video/mpeg” is the file MIME type,
“mpeg_play” is a program that wil l view the file, and
“%s” will be replaced with the actual file name. There
can be a global mailcap and a personal mailcap files.
Entries in the personal mailcap take precedence over
entries in the global mailcap, which in turn take
precedence over the built -in defaults. So if we want to
change global and personal mapping, we just need to
edit the file. For default mapping, we need to change the
source code.

Some servers do not specify the file type of the
document, which is being sent. In that case, Mosaic
determines the incoming file type from the file name
extension and invokes appropriate external viewer.
Mapping between file types and extensions is kept in an
extension map file. One line in an "extension map" file
is

image/jpeg jpeg jpg jpe
where image/jpeg is a file MIME type, and jpeg, jpg and
jpe are file extensions that will map to this file type.
There are global extension map files and personal
extension map files. Entries in personal extension map
take precedence over entries in global extension map,
which in turn take precedence over built -in defaults
specified in source code.

Refined task, based on the domain terminology, is
the following:

Locate in the code where
• the default, personal, and global  mappings are set
• the type of incoming document is determined by

protocol or by extension
The task is extensive and therefore it is divided into

subgoals.
First subgoal is based on the fact that if we open a

new window, it has the same browsing functionality as
the original one. This implies that the new window has
the same mappings as the old window and the mappings
must be copied immediately after the opening.
Therefore our first subgoal is to find the function that
opens a new window.

For this, we adopt top-down strategy and start from
function main(). The search graph from this case study
is in Figure 4. Scenario of this phase is described in
Appendix A, and through it we locate function
mo_open_window() that is used to open a new window.

Second subgoal is to find where and how the
mappings are set. The mappings are set after the
window opens and before any document is loaded.
Because this is a functionality connection, we continue

top_down strategy, starting in mo_open_window(), see
Appendix B.

After several steps of the search, we find ourselves in
mo_open_window() again. Hence somewhere along the
way, we must have taken a wrong turn and must
backtrack. On the second try, we reach functions
HTFormatInit() and HTFileInit() that deal with the
settings and this completes the second subgoal.

The functions deal with six global variables, see
Figure 4. However we need to know where the values of
the six global variables come from and this is the third
subgoal of the search. For that, we need to trace the data
flows ending in the six global variables. Our strategy is
backward data flow, see Appendix C.

The result of the scenarios is a partial
comprehension of the system. Of the 984 functions in
Mosaic, we visited only 22. Hence of all Mosaic code,
we visited about 2%. In the scenarios, we moved 21
times from one function to another through function
call , and moved backward through the data flows six
times. The data flow based scenario was used when we
dealt with a comprehension of specific data items, while
control flow based scenario was used when we tried to
understand a specific functionality or algorithm.

The actual change will follow closely the feature
location scenario, particularly its third part.

5. Related work

In previous research, Biggerstaff et al. [1] defined
"concept assignment problem" as the problem of
“discovering human-oriented concepts and assigning
them to their realizations”. He investigated the concept
assignment process and claimed that because concept
and program are not in the same level of abstraction, the
human input is necessary. To perform concept
assignment, a prior knowledge of the specific domain, a
plausible reasoning, etc are needed. His conclusion is
that totall y automated tool for concept assignment is
probably impossible, but some degree of automation is
helpful. He performed case studies, where static analysis
and both formal and informal information (for example
names in the program) are used to locate concepts in the
program.

Wilde et al. [24, 25] developed a program feature
location technology called Software Reconnaissance,
based on the analysis of test cases. The program is
instrumented and two sets of test cases are establi shed:
the test cases that execute the feature, and the test cases
without the feature. The feature location is determined
by analysis of the two sets of event traces. This
technique is very efficient for finding starting
components in feature location, and it seems to be a
natural candidate for a combination with our technique
on the search of the static dependence graph.



www.manaraa.com

Erdös and Sneed [5] confirm that it is unnecessary
for a programmer to full y comprehend a program before
maintenance. They proposed seven questions to be
answered by the programmer before he or she can
maintain the program. These questions are about domain
knowledge, control flow, and data flow information.

Lakhotia [12] performed two case studies on
practical systems: modification of GNU C Compiler
(gcc) and modification of Wisconsin Program
Integration Systems (WPIS). He used function call
graph, and used command grep, more, and emacs editor.
He described the feature location process and concluded
that partial comprehension of software is suff icient for
practical maintenance work.

Similarly as in [1, 5, 12, 24, 25], we assume that the
program documentation - if it exists at all - does not
support concept location and hence the concept location
scenarios are necessary. That is the case for many
practical systems.

von Mayrhauser and Vans [22, 23] studied processes
of program comprehension and frequencies of
individual actions of the programmers. They also
suggest that a tool performing partial comprehension
will be very helpful in maintenance work.

Littman et al. [14] investigate the strategies to use for
feature location. They described two feature location
strategies: the systematic strategy and as-needed
strategy. To adopt a systematic strategy, the programmer
needs to understand the behavior of the program totally
before any change can be made. On the other hand, only
the necessary part of the system is investigated. It is
shown that the as-needed strategy does not provide
sufficient knowledge for the programmer about the
casual interactions of the programmer’s functional
components, thus often leads to unsuccessful
modifications.

Jerding and Rugaber [11] use both the static and
dynamic analysis in program understanding. They use
static analysis to extract the system architecture and
dynamic analysis to analyze the behavior of specific
components and their interactions. Their method is to
analyze the event trace and abstract the interaction
pattern into various level of abstraction. They also

Concept or feature location can be used in different
maintenance jobs, including program comprehension
and software evolution. Location process is usually used
with the change impact analysis. Change impact
analysis [2] tries to estimate the size of the future

change, while concept location just locates a concept in
the code - related but different notions.

In dependence graph research, Ottenstein and
Ottenstein [18] proposed PDG to represent program in
software development environment. Horwitz, and Reps,
[9, 10] extended PDG to SDG for program with multiple
procedures. They also proposed SDG for program
slicing, program differencing and program integration.
Harrold et al. [7] proposed a method to construct PDG
from abstract syntax tree of a program. Harrold et al.
also extended SDG to object oriented programs and
investigated methods for object-oriented program sli cing
[13].

6. Conclusion and future work

In our case study, we studied search scenarios for
feature location, using the dependence graphs. The case
study identified the requirements for an integrated
supporting tool. The tool must be able to analyze the
code and extract ASDG. Tool interface should display
both the dependence graph and the search graph. Since
the search graph is essentiall y a subset of ASDG, they
both can be displayed in one layout. The user should be
able to easil y access the information for each vertex and
edge, including both the code and the documentation.
The tool should support varied search expansion
strategies, including top-down or bottom-up and forward
or backward data flow strategies. The user should be
able to select the starting component, with function
main() being the default. A tool that can perform all
these tasks is being developed in our research lab.

We believe that the process of software change, of
which feature location is a starting part, is an important
frontier of maintenance and evolution research. The
tools supporting feature location offer a promise of
improving productivity of maintenance programmers
and quality of the resulting code.

7. References

[1] T. Biggerstaff , B. Mitbander, and D. Webster, "Program
Understanding and the Concept Assignment Problem,"
Communications of the ACM 37, No. 5, 72-83 (May
1994).

[2] S. Bohner and R. Arnold, “An Introduction to Software
Change Impact Analysis” , Software Change Impact
Analysis, IEEE Computer Society, 1996.

[3] F. P. Brooks, Jr., “The Computer Scientist as Toolsmith
– II” , Computer Graphics, Vol. 28, pp. 281-287,
November, 1994.



www.manaraa.com

[4] E. Charniak, D. McDermott, “ Introduction to Artificial
Intelli gence”, Addison-Wesley Publishing Company,
1984

[5] K. Erdös and H. M. Sneed, “Partial Comprehension of
Complex Programs” , Proceedings of the 6th International
Workshop on Program Comprehension, Ischia, Italy,
June 1998, pp. 98-105.

[6] M. J. Harrold, B. Malloy, and G. Rothermel,
“Constructing Program Dependence Graphs using a
Parser” , ACM International Symposium on Software
Testing and Analysis, 1993.

[7] M. J. Harrold, G. Rothermel, and S. Sinha,
“Computation of Interprocedural Control Dependence”,
Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis
(ISSTA'98), pp. 11-20, March 1998.

[8] M. J. Harrold, B. Malloy, “A Unified Interprocedural
Program Representation for a Maintenance
Environment” , IEEE Transactions on Software
Engineering, vol.2, no.3, July 1993, pp. 270-285

[9] S. Horwitz, T. Reps, and D. Binkley, “ Interprocedural
Sli cing Using Dependence Graphs” , ACM Trans.
Programming Languages and Systems, Vol. 12, No. 1,
Jan. 1990, pp. 26-60

[10] S. Horwitz, T. Reps, “The Use of Program Dependence
Graphs in Software Engineering” , Proceedings of the
14th International Conference on Software Engineering,
May 1992.

[11] D. Jerding and S. Rugaber, “Using Visualization for
Architectural Locali zation and Extraction” , Proceedings
of the Fourth Working Conference on Reverse
Engineering, October 1997, the Netherlands, IEEE
Computer Society, pp. 56-65

[12] A. Lakhotia, “Understanding Someone Else’s Code:
Analysis of Experience” , Journal of Systems and
Software, Vol. 23, pp. 269-275 (1993).

[13] D. Liang, M. J. Harrold, “Slicing Object Using System
Dependence Graph”, Proceedings of ICSM’98,
November 1998.

[14] D.C. Littman, J. Pinto, S. Letovsky and E. Soloway,
Mental Models and Software Maintenance, Proceedings
of the Conference on Empirical Studies of Programmers,
Albex, Norwood NJ, pp. 80 - 98, 1986

[15] D. Le Metayer, "Describing Software Architecture
Styles Using Graph Grammars," IEEE Trans. On
Software Engineering, 1998, pp 521-533.

[16] Mosaic web site (source codes and documents):
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic

[17] N. Nilsson, “Principles of Artificial Intelligence”,
Morgan Kaufmann Publishers, Inc., 1980

[18] K. J. Ottenstein, and L. M. Ottenstein,. “The Program
Dependence Graph in a Software Development
Environment” , Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments,
1984.

[19] V. Rajli ch, “MSE: A Methodology for Software
Evolution” , Journal of Software Maintenance, Vol. 9,
1997, pp.103-124.

[20] V. Rajli ch, “A model for Change Propagation Based on
Graph Rewriting” , Proceedings of ICSM’97, Bari, Italy,
October 1997.

[21] V. Rajli ch, "Theory of Data Structures by Relational and
Graph Grammars," In Automata, Languages, and
Programming, Lecture Notes in Computer Science 52,
Springer Verlag, Berlin, 1977, pp. 391-511.

[22] A. Von Mayhauser and A. Vans, “Program
Understanding Processes During Corrective
Maintenance of Large Scale Software”, Procs.
International Conference on Software Maintenance ’97,
Sept. 1997, Bari, Italy, pp 12-30.

[23] A. Von Mayhauser and A. Vans, “Program
Understanding Behavior During Enhancement of Large-
scale Software” , Journal of Software Maintenance:
Research and Practice, Vol. 9, pp 299-327 (1997).

[24] N. Wilde and T. Gust, “Locating user functionality in
old code”, Proceedings of Conference on Software
Maintenance 1992, Orlando, Florida, 1992, pp. 200-205.

[25] N. Wilde, Michael Scully, “Software Reconnaissance:
Mapping Program Features to Code”, Software
Maintenance: Research and Practice, Vol. 7, 49-62,
1995.

[26] S.S. Yau, R.A. Nichol, J.J. Tsai and S. Liu, “An
Integrated Life-Cycle Model for Software
Maintenance”, IEEE Trans. Software Engineering,
15(7), 1988, pp 58-95.

Appendix A: Search for window opening

Inspection of the function main() reveals that it call s
several other functions, but only mo_do_gui() is
relevant to our task, because it is the real main routine of
the application. Other functions are small functions,
used for exception handling, new process creation,
socket communication initiation, and it is unli kely that
they would deal with window opening.



www.manaraa.com

Function mo_do_gui() does not deal with the
window opening, but calls directly the functions
mo_open_initial_window() and
XtVarGetApplicationResources(), and accesses several
global variables. The function
mo_open_initial_window() seems to open a window
directly or indirectly, so it is the next visited function.

Function mo_open_initial_window() sets a timeout
that call s fire_er_up() after 10 milli seconds. We guess
that fire_er_up() does the actual work.

Definition of function fire_er_up() is not obvious,
but after macro expansion the definition of
XmxCallback(fire_er_up) is actually the definition of
fire_er_up(). It call s mo_open_window() with the home
document URL as the argument.

Function mo_open_window() opens a window and
views a given URL. This completes the first part of the
search.

Appendix B: Search for mappings

Function mo_open_window() call s
mo_make_window() to make a window from scratch.
Function  mo_make_window() creates an X window
shell and then call s  mo_open_window_internal() to
open a browser window.

Function mo_open_window_internal() creates a
structure of type mo_window, call s mo_fill _window(),
and adds this window to the window li st.

Function mo_fill_window() takes the structure and
fill s in data values, for example title, menu creation and
setting. It call s several functions of X window library
and also sets up the menu bar and pulldown menus. For
every item in the pulldown menus, such as, “New
Window” , it specifies the callback function as
menubar_cb().

The definition of XmxCallback (menubar_cb) in the
source code is actually the definition of  menubar_cb()
after macro expansion. This function call s a processing
function for each menu item. We choose to search
function mo_open_another_window(), which is
matched to menu item “New window” .

This function opens a new window and loads the
default document into it. It call s
mo_open_another_window_internal() which call s
mo_make_window() that was visited before. Hence we
have to backtrack and try another branch.

We backtrack to menubar _cb() and try another
direction: menu item “Reload Config Files” and the
related function mo_re_init_formats().

Function mo_re_init_formats() is a simple function
that call s function HTReInit(), which in turn call s three
functions: HTFormatInit(), HTFileInit() and
HTList.c::HTList_delete(). Of the three functions,
HTList.c::HTList_delete() is used to delete a li st and is

unrelated to our goals. The remaining two functions wil l
be inspected.

Function HTFormatInit() call s
HTLoadTypesConfigFile() twice and
HTSetPresentation() many times. Every time
HTSetPresention() is called, it sets a default mapping
between one MIME type and its processing program. In
the source code, total of 38 default mappings are set.
Most of them are commonly used pairs of MIME type
and their processing programs. Function
HTLoadTypesConfigFile() is called twice with global
variable personal_type_map and global_type_map
respectively. From the name of function and global
variable, we infer that they establi sh personal and global
type mapping, respectively. The calling sequence is
default mapping first, then global mapping, and then
personal mapping. This calling sequence decides the
precedence of the three mappings. Global boolean
variable use_default_type_map decides whether we call
default mappings or not.

Function HTSetPresentation() adds one more
mapping to the mapping li st. This mapping is between a
MIME type and its processing program.

Inspecting further HTLoadTypesConfigFile(), we
find it reads type mapping file line by line and creates or
updates mappings between file types and processing
programs.

Inspection of HTFormatInit() and the functions it
call s reveals that they establi sh the mappings between
the file MIME types and their processing programs.

We expect it establi sh the mapping between
extension and MIME type. Inspection reveals that
Function HTFileInit() has the similar working
mechanism as  HTFormatInit(). It call s function
HTLoadExtensionsConfigFile() twice and function
HTSetSuffix() many times. Every call to HTSuffix()
sets a default mapping between one extension and its
MIME type. Function HTLoadExtensionsConfigFile() is
called twice with global variable
personal_extension_map and global_extension_ map
respectively. From the name of function and global
variable, we think they establi sh personal and global
extension mappings, respectively. The calling sequence
is default mapping first, then global mapping, and then
personal mapping. This calling sequence decides the
precedence of the three mappings. Global boolean
variable use_default_extension_map decides whether we
call default mappings or just skip them.

Function HTSetSuffix() adds one more mapping to
the mapping li st. This mapping is between file extension
to its relevant MIME type.

Inspecting further function
HTLoadExtensionsConfigFile(), we find it reads line
from extension mapping file and creates or updates one
mapping for every extension.



www.manaraa.com

As the result of this part of the search, we located six
functions HTFormatInit(), HTSetPresentation(),
HTLoadTypesConfigFile(), HTFileInit(),
HTLoadExtensionsConfigFile(), HTSuff ix() that deal
with the mappings. The values of the mappings originate
from six global variables personal_type_map,
global_type_map, use_default_type_map,
personal_extension_map, global_extension_map and
use_default_extension_map.

Appendix C: Search for source of mappings

The six variables are assigned in function
mo_do_gui() by values of global data  Rdata. The
information flows to Rdata from function
XtVaGetApplicationResources() which is called by
mo_do_gui(). In this function call, variables “Rdata”
and “resources” are two actual arguments. They store
the same MOTIF resource information in different
formats and the function converts the data between these

two formats. The data flow is directed from “resources”
to “Rdata”.

When we inspect the data resources, we find all
default values of the six variables. So the six global
variables actuall y get their default values from here.
Two macros and one environmental variable are used to
specify the default values. They are macro
GLOBAL_TYPE_MAP, macro
GLOBAL_EXTENSION_MAP, and environmental
variable HOME are used.

Finally, the located components that implement the
feature consist of functions HTFormatInit(),
HTSetPresentation(), HTLoadTypesConfigFile(),
HTFileInit(), HTLoadExtensionsConfigFile(),
HTSuffix(), and variables personal_type_map,
global_type_map, use_default_type_map,
personal_extension_map, global_extension_map,
use_default_extension_map, resources, macros
GLOBAL_TYPE_MAP and
GLOBAL_EXTENSION_MAP, and environmental
variable HOME, see Figure 4.


