Copyright 2000 EEE. Published in the Proceedings of IWPC'00, IEEE Computer Society Press, Los Alamitos, CA, ISBN 0-769506569, pp. 241 -
249, Personal use of this material is permitted. However, permisson to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to serversor lists, or to reuse any copyrighted component of thiswork in ather works, must be
obtained from the IEEE. Contad: Manager, Copyrights and Permissons/ IEEE Service Center / 445 Hoes Lane / P.O. Box 1331/ Piscataway, NJ
08855-1331, USA.

Case Study of Feature L ocation Using Dependence Graph*

Kunrong Chen, Vadav Rajlich
Department of Computer Science
Wayne Sate University
Detroit, MI 48202 USA
rajlich@cs.wayne.edu

Abstract

Software change requests are often formulated as
requests to modify or to add a specific feature or
concept. To implement these changes, the features or
concepts must be located in the code. In this paper, we
describe the scenarios of the feature and concept
location. The scenarios utilize a computer-assisted
search of software dependence graph. Scenarios are
demongtrated by a case study of NCSA Mosaic source
code.

1. Introduction

In software maintenance and evolution, change
requirements are often formulated as requests to modify
or to add spedfic program concepts or features [2, 26).
An example of such arequest is “Add a new externd
viewer to Mosaic web krowser”. Before aty actual
change can be made to the system, software
programmers must locate the implementation of the
concepts (“external viewer”) in the source @de.

Concept location is a process that maps domain
concepts to the software cmponents. The input is the
maintenance request, expressed in natura language and
using the domain level terminology. The output of the
mapping is a set of components that implement the
feature or concept, see Figure 1. Feature or concept
location is relatively easy in small systems, which the
programmer fully understands. For large and complex
systems, it can be a onsiderable task.

The difficulty of feature location is caused by severa
factors. One is that the input and autput of the location
process belong to dfferent levels of abstraction: the
input is in domain level and the output is in
implementation level, see Figure 1. To make the
trandation from one level to another, extensive

*) This research was partidly supported by NSF grant #
CCR9803876

knowledge is required, including domain knowledge,
programming knowledge, knowledge of algorithms and
data structures, knowledge of the software cmponents
and their interactions, etc. This knowledge is hard to
formalize ad the programmer who has this knowledge
must participate in the location process

Domain level request

/
Concept location

Components implementing concept

Figure 1. Concept location process

Anocther factor is the high cost of comprehension of
large legacy systems, which makes a full comprehension
of the program impracticd and unnecessary [5, 12]. The
programmers must limit the scope of their investigation
and comprehend only parts, while making sure that the
comprehension is sufficient for the maintenance task.
They neal a scenario that divides the comprehension
into steps and dgves feedback from each step. The
feedback will help them to dedde whether they are on
theright track. This paper presents such aprocess

We present a computer-asssted seach process with
different and aternating roles for the omputer and for
the programmer. The processbelongs to the cdegory of
“Intelligent Assstance’ as advocated by Brooks [3] who
claimed that “intelligence anplifying systems can, at
any given leved of available systems technology, beat Al
systems. That is, amachine axd amind can beat a mind-
imitating machine working by itsalf.” When dealing
with feature location, we ae @nvinced that a
programmer asssted with tods can achieve more than a
totall y automated feature location tod.

Sedion 2 of the paper describes the dependence
graph used for feature location. Sedion 3 investigates

www.manaraa.com

the theoreticd aspeds of the feature location scenarios.
A case study of NCSA Mosaic software system is
presented in sedion 4. Sedion 5 contains the references
to the other work. Sedion 6 contains conclusions and
future work. The Appendices present detail s of the @ase

study.
2. Abstract System Dependence Graph

In [18], procedure dependence graph (PDG) was
introduced. PDG is a graph representation of a
procedure where vertices are statements or regions of
the cde. Data dependence alges represent posshle
flow of data in a procedure. Control dependence a@lges
represent conditions on which a statement or region
depends [10]. Every procedure has a spedal entry vertex
representing the entry of the procedure. The cntrol and
data flow information is useful for data flow analyss,
data flow testing, dicing, etc. [6]

A system dependence graph (SDG) [9, 10] is made
up of several procedure dependence graphs. Additional
medhanisms are defined to ded with function call and
parameter passng. A call edge is added to conned the
cal and definition of a procedure. Algorithms are
developed to construct SDG or PDG from a program [6,
7,8,9, 10, 18].

When deding with feature location, the programmer
usualy does not need access to the statement level
information. A higher level of abstraction of the
program is more helpful. We propose a abstract system
dependence graph (ASDG) that can be m@nstructed
using a subset of the information of the SDG. The fact
that ASDG is a subset of SDG guarantees that the
algorithms used to construct SDG can be used to
construct ASDG also.

In the C language, the ASDG consists of vertices that
represent components, i.e. functions and globa

variables. Function cdl is represented by call edge and
data flow edge represents flow of data from a function
to a global variable and vice versa. Formally, we define
ASDG in the following way: Let C be the set of
componentsin the software, andC = F 0 G whereFisa
set of functions and G is a set of global data. For d,e [
C, edge <d,e> denotes a dependence of component d on
e lfd, edFthen<de>iscal edge ifdd0GoredG,
then <d,e> is data flow edge. An ASDG is a set D of
dependenciesin the system.

The set of all components used in D is defined as
comp(D) = {e | there &ists d, such that <e,d> O D or
<d,e> 0 D}. The neighbors of a vertex d are defined as
neigh(d) = {<e,d> | there «ists e such that <e,d> O D}
O {<d,f> | there ists f such that <d,f> 00 D}. Please
note that we use the notation of [15, 21] for graphs.

An example of ASDG and its source ®de are in
figure 2.

3. Feature Location Scenarios

In each step o the seach, one cmmponent is chosen
for visit. All visited components and their neighbors
constitute asearch graph [4, 17]. At the beginning, the
search graph contains only the starting component. Each
visit to a component expands the search graph, and the
process continues until dl the mponents
implementing the feature or concept are located.

The seach graph is the part of the ASDG that was
visited during the seach. There is aways one active
component seleded for the next gep. Formally, Sis a
search graph if and only if there eists d O comp(S)
such that s<d> 0 S (d is seleded component) and (S -
s<d>) O D.

The tasks related to the seach are divided into the
programmer's tasks and the tod's tasks, seeFigure 3.

’ __ycall edge

-—_p data flow edge

(7 : function node

= : global variable node

int g; void foo2() {
main() { inta=2;
int a=2; foo4(a);
a =fool(a); a = foo5();
foo2(); }
foo3();
} void foo4(int a) {
g+=a
intfool(inta){ }
g=3;
return g+a; int foo5() {
} return g;
void foo3() {}

Figure 2. A sample program and itsASDG

www.manaraa.com

The programmer’s role is to make dedsions that
dired the search. In particular, the programmer hasto do
the foll owing:

L ocate starting component: The assumption is that
at the beginning, little is known about the system. The
gtarting point is often the top component, i.e. function
main(), becuse the top component summarizes al the
requirements of the entire system. Other possble
starting points for the seach are the results of a dynamic
andysis [24], or a component whose name is smilar to
the ncept sought [1], or a randomly picked
component.

Choose a component for visit: In every step, one
component is sleaed for a visit and expanson of the
search graph. The programmer explores the source @de,
dependence graph, and documentation, in order to
understand the omponent and dedde whether if it is
relevant or unrelated to the feature.

Check if goal is reached: The programmer chedks
whether all components dealing with the feature have
been found.

The supporting software tods do the foll owing tasks:

Extract dependence graph of the system:
Dependence graph is extracted from the source @de by
the program analyzer. Becuse the source @de does not
change during the feature location process the analyzer
isinvoked only at the beginning.

Update the search graph: After the programmer
visted a wmponent, the tod will add it to the seach
graph. Based on the seach graph, the programmer can
backtrack, undo, or redo some of higher previous
operations.

The scenario of a feature location is a sequence of
search graphs S;, S, ... S, which garts with a single-
component seach graph and ends with the feature
located. At the beginning of the search, S; = {s<t>}.

If a step is not a backtracking one, the sdeded
component will be investigated and the seach graph

will expand. Formally, S = (§ —s<c>) O {m, s<d>}
where m 0 neigh(c) and either m = <c,d> or m = <d,c>.

If the step is a backtracking step, that means current
search diredion isnot promising and the user returns to
a previoudy visited component. More formally, for
backtracking step, S+; = (§ - s<c>) O s<d> whered [
comp(S).

When programmer visits a component, he/she
deddes whether the component is related to the feature
and whether to expand the seach graph. There ae
several strategies of search graph expansion:

Top-down strategy [19, 20] expands seach graph
by called functions. The scenario starts with a function
main() that summarizes the requirements for the whole
program. If the sought functionality is not implemented
diredly there, the programmer reaursively visits called
functions until the desired functionality is found.

Bottom-up strategy is the opposite of top-down
strategy and expands the seach graph by calling
functions.

Backward data flow strategy is employed when
functionality of the system depends on spedfic valuesin
spedfic variables. The programmer is saching for the
origin of the values and visits the variables or functions
that provide those val ues.

Forward data flow strategy is the opposite and the
progrcammer is saching for the degtination of the
values.

The seach isguided by the programmer's knowledge
of the semantics of the cmmponents aready visited. It
can be divided into several subgoals.

Ingead of dired seach for a spedfic feature, the
programmer seaches for another closaly related feature
that is easier to find, and at the sametime it isrelated in
a predictable way to the feature seached. An example
of thisisin our case study.

Locate Choose Visit Check if
. starting ®1 node for _»the Node | state i
node * expanding node relevant? goalstaté Is
reached?
]
Proarammer’s 4 E 4 v |
1 1 1
__________________ T T -
T A i ;
Tool's work : L A
1 | Graph layout Update the Expand the
1 |algorithm search graph search graph
[} T T
v * ¥

Dependence graph i

Search graph

Figure 3. Featur e location as a computer-assisted sear ch

www.manaraa.com

4. Case Study
As a part of our research, we conducted a @se study
based on NCSA Mosaic web browser for the X Window
System Version 25 [16]. The change requirement was
to add a new audio type to Mosaic. The feature location

task was to find how Mosaic deals with video o audio
files and to locate dl components that manage fil e type

Domain understanding: NCSA Mosaic uses the
term “externa viewer” for a program that Mosaic clls
to view file formats it does not support internally, such
as image or audio files. Mosaic browser retrieves
information from two kinds of servers, lealing to two

different agorithms. One kind o server tels the

browser the MIME (Multipurpose Internet Mail

Extensions) type of the transferred data. MIME is an
Internet standard, which is used to spedfy the type of

the object being transferred across the Internet. Mosaic

and processor registration. As the firgt task, we had to
understand the domain and its terminol ogy.

i XtVaGetApplicationRe
sources()
i /

~

~

mo_do_gui()]
ol \
!
II
[mo_open_initial_window()]

1

1
1

1

1

! .

H fire_er_up()
1

[meCaIIback(fire_er_up)]

1

]

]

]

]

]

' v
]

]

]

[mo_open_window()]
—

L resources

Environmental

variable:
HOME

—_—
Two macros for global mapping:
GLOBAL_EXTENSION_MAP

GLOBAL TYPE MAP

L Rdata
H

— - call edge
—__p: data flow edge
(3 : function node

= : global variable node
[] :located component

o
!
1
Il .
| [mo_make_window()]
{
1
H [mo_open_window_internal()] [mo_open_another_window_internal()]
!
/ Y 4
1
1
] [mo_fill_window()] [mo_open_another_window()]
/ }
menubar_cb(...)

v

[XmxCallback(menubar_ch)]

v

[mo_re_init_formats()]

HTRelnit()

]

]
]
]
]
1
1
1
]
]
]
]
]
]
]
]
]
1
1
]
]
]
]
]
]

—

]
1
! HTFormatinit) | HTFilelnit)
!
!
, ! ! 7
] |HTSetPre | / [HTLoadTypes HTLoadExtensio | i|HTSetS
I |sentation()| / | ConfigFile() nsConfigFile() || uffix()
I K |
! ; !
4 ' '
1 1
| Six global variables relevant to type processing |
Figure 4. Search graph of Mosaic

www.manaraa.com

uses "mailcap” file to spedfy the external viewer for the
file. A mailcap file is a @nfiguration file that maps file
types to external viewers. One line in an example
mail cap file lodks like

video/mpeg; mpeg_play %s
where ‘“video/mpeg” is the file MIME type,
“mpeg_gday” is a program that will view the file, and
“%s’ will be replaced with the actua file name. There
can be a global mailcap and a personal mail cap files.
Entries in the personal mailcap take precelence over
entries in the global mailcap, which in turn take
precalence over the built-in defaults. So if we want to
change global and personal mapping, we just need to
edit the file. For default mapping, we neeal to change the
source ode.

Some servers do not spedfy the file type of the
document, which is being sent. In that case, Mosaic
determines the incoming file type from the file name
extenson and invokes appropriate ecternal viewer.
Mapping between fil e types and extensions is kept in an
extension map file. One line in an "extension map" file
is

image/jpeg jpeg jpg jpe
where image/jpeg isafile MIME type, and jpeg, jpg and
jpe are file extensions that will map to this file type.
There ae global extension map files and personal
extension map files. Entries in persona extension map
take precalence over entries in gobal extension map,
which in turn take precedence over built-in defaults
spedfied in source mde.

Refined task, based on the domain terminology, is
the foll owing:

Locatein the code where

« the default, personal, and global mappings are set

« the type of incoming document is determined by
protocol or by extension

The task is extensive and therefore it is divided into
subgoals.

First subgoal is based on the fact that if we open a
new window, it has the same browsing functionaity as
the original one. This implies that the new window has
the same mappings as the old window and the mappings
must be pied immediatdly after the opening.
Therefore our first subgoal is to find the function that
opens a new window.

For this, we adopt top-down strategy and start from
function main(). The seach graph from this case study
isin Figure 4. Scenario o this phase is described in
Appendix A, and through it we locate function
mo_open_window() that is used to goen anew window.

Second subgoal is to find where and how the
mappings are set. The mappings are set after the
window opens and before ay document is loaded.
Because this is a functionality connedion, we @ntinue

top_down strategy, starting in mo_open_window(), see
Appendix B.

After several seps of the search, we find ourselvesin
mo_open_window() again. Hence somewhere dong the
way, we must have taken a wrong turn and must
backtrack. On the semnd try, we reach functions
HTFormatinit() and HTFilelnit() that ded with the
settings and this compl etes the second subgoal .

The functions deal with six global variables, see
Figure 4. However we neal to know where the values of
the six global variables come from and this is the third
subgoal of the search. For that, we nedl to trace the data
flows ending in the six global variables. Our strategy is
backward data flow, see Appendix C.

The result of the scenarios is a partid
comprehension of the system. Of the 984 functions in
Mosaic, we visited only 22. Hence of al Mosaic code,
we visited about 2%. In the scenarios, we moved 21
times from one function to ancther through function
call, and moved backward through the data flows gx
times. The data flow based scenario was used when we
dealt with a comprehension of spedfic dataitems, while
control flow based scenario was used when we tried to
understand a spedfic functionality or algorithm.

The actual change will follow closaly the feature
location scenario, particularly itsthird pert.

5. Related work

In previous reseach, Biggerstaff et a. [1] defined
"concept assgnment problem" as the problem of
“discovering human-oriented concepts and assgning
them to their redlizations’. He investigated the @ncept
assgnment process and claimed that because concept
and program are not in the same level of abstraction, the
human input is necessary. To perform concept
assgnment, a prior knowledge of the spedfic domain, a
plausible reasoning, etc ae needed. His conclusion is
that totally automated tod for concept assgnment is
probably impossble, but some degree of automation is
helpful. He performed case studies, where satic analysis
and bath formal and informal information (for example
names in the program) are used to locate mnceptsin the
program.

Wilde @ al. [24, 25] developed a program feature
location tednology called Software Remnnaissnce
based on the aalysis of test cases. The program is
instrumented and two sets of test cases are establi shed:
the test cases that exeaute the feature, and the test cases
without the feature. The feature location is determined
by anadysis of the two sets of event traces. This
technique is very efficient for finding starting
components in feature location, and it seems to ke a
natural candidate for a ombination with our technique
on the seach of the gtatic dependence graph.

www.manaraa.com

Erdds and Sneel [5] confirm that it is unnecessry
for a programmer to fully comprehend a program before
maintenance They proposed seven questions to be
answered by the proggammer before he or she can
maintain the program. These questions are about domain
knowledge, control flow, and data flow information.

Lakhotia [12] peformed two case studies on
practicd systems. modification of GNU C Compiler
(gco and modification of Wisconsin Program
Integration Systems (WPIS). He used function cdl
graph, and used command grep, more, and emacs editor.
He described the feature location processand concluded
that partial comprehension of software is sufficient for
practicd maintenancework.

Similarly asin [1, 5, 12, 24, 25], we asume that the
program documentation - if it exists at al - does not
support concept location and hence the concept location
scenarios are necessry. That is the @se for many
practicd systems.

von Mayrhauser and Vans [22, 23] studied processes
of program comprehension and frequencies of
individual actions of the programmers. They aso
sugeest that a tod performing partial comprehension
will be very helpful in maintenancework.

Littman et al. [14] investigate the Srategies to use for
feature location. They described two feature location
drategies. the systematic strategy and as-nealed
strategy. To adopt a systematic strategy, the programmer
needs to understand the behavior of the program totally
before ay change can be made. On the other hand, only
the necessary part of the system is investigated. It is
shown that the as-neealed strategy does not provide
sufficient knowledge for the programmer about the
casual interactions of the programmer’s functional
components, thus often leads to unsuccesdul
maodifications.

Jerding and Rugaber [11] use bath the static and
dynamic enalysis in program understanding. They use
gtatic aenalysis to extract the system architedure and
dynamic analysis to analyze the behavior of specific
components and their interactions. Their method is to
andyze the event trace and abstract the interaction
pattern into various level of abstraction. They also

Concept or feature location can be used in different
maintenance jobs, including program comprehension
and software evolution. Location processis usually used
with the change impact analysis. Change impact
andysis [2] tries to estimate the size of the future

change, while mncept location just locates a @mncept in
the code - related hut different notions.

In dependence graph research, Ofttengein and
Ottengtein [18] proposed PDG to represent program in
software development environment. Horwitz, and Reps,
[9, 10] extended PDG to SDG for program with multiple
procedures. They also proposed SDG for program
dicing, program differencing and program integration.
Harrold et al. [7] proposed a method to construct PDG
from abstract syntax tree of a program. Harrold et al.
aso extended SDG to oljed oriented programs and
investigated methods for object-oriented program dlicing
[13].

6. Conclusion and future work

In our case study, we studied seach scenarios for
feature location, using the dependence graphs. The ase
study identified the requirements for an integrated
supporting tod. The tod must be able to analyze the
code and extract ASDG. Tod interface should display
both the dependence graph and the seach graph. Since
the seach graph is essntialy a subset of ASDG, they
both can be displayed in one layout. The user should be
able to easily access the information for each vertex and
edge, including bah the wmde and the documentation.
The tod should support varied seach expansion
strategies, including top-down or battom-up and forward
or backward data flow strategies. The user should be
able to sded the starting component, with function
main() being the default. A tod that cen perform all
these tasks is being developed in our research lab.

We believe that the process of software ciange, of
which feature location is a starting part, is an important
frontier of maintenance and evolution reseach. The
tods aupporting feature location offer a promise of
improving productivity of maintenance programmers
and quality of theresulting code.

7. References

[1] T. Biggerstaff, B. Mitbander, and D. Webster, "Program
Understanding and the Concept Assgnment Problem,"”
Communications of the ACM 37, No. 5, 72-83 (May
199).

[2] S Bohner and R. Arnold, “An Introduction to Software
Change Impact Anaysis’, Software Change Impact
Analysis, IEEE Computer Society, 1996.

[3] F. P.Brodks, J., “The Computer Scientist as Todsmith
— 11", Computer Graphics, Vol. 28, pp. 281-287,
November, 19%4.

www.manaraa.com

(4]

(1]

(11]

(12

[13]

(14]

[15]

[16]

E. Charniak, D. McDermott, “Introduction to Artificial
Intelli gence”, Addison-Wesley Publishing Company,
1984

K. Erd6s and H. M. Sned, “Partid Comprehension of
Complex Programs”, Proceadings of the 6" International
Workshop on Program Comprehension, Ischia, Italy,
June 1998, pp. 98-105.

M. J Harrold, B. Madloy, and G. Rothermd,
“Constructing Program Dependence Graphs using a
Parser”, ACM International Symposium on Software
Testing and Analysis, 1993.

M. J Harrold, G. Rothermel, and S Sinha,
“Computation of Interprocedural Control Dependence”,
Proceadings of the ACM SIGSOFT Internationa
Symposium on Software Testing and Analysis
(ISSTA'98), pp. 11-20, March 1998.

M. J. Harrold, B. Mdloy, “A Unified Interprocedural
Progam Representation for a Maintenance
Environment”, |EEE Transactions on Software
Engineering, vol.2, no.3, July 1993, pp. 270-285

S. Horwitz, T. Reps, and D. Binkley, “Interprocedura
Slicing Using Dependence Graphs’, ACM Trans.
Programming Languages and Systems, Vol. 12, No. 1,
Jan. 1990, pp. 26-60

S. Horwitz, T. Reps, “The Use of Program Dependence
Graphs in Software Engineering”, Procealings of the
14™ International Conference on Software Engineering,
May 19.

D. Jerding and S. Rugaber, “Using Visudization for
Architectural Localization and Extraction”, Proceedings
of the Fourth Working Conference on Reverse
Engineering, October 1997, the Netherlands, IEEE
Computer Society, pp. 56-65

A. Lakhotia, “Understanding Someone Else's Code:
Analysis of Experiencé’, Journal of Systems and
Software, Vol. 23, pp. 269-275 (1993).

D. Liang, M. J. Harrold, “Slicing Object Using System
Dependence Graph”, Proceadings of [ICSM’98,
November 1998.

D.C. Littman, J. Pinto, S. Letovsky and E. Soloway,
Mental Models and Software Maintenance, Proceedings
of the Conference on Empirical Studies of Programmers,
Albex, Norwood NJ, pp. 80 - 98, 1986

D. Le Metayer, "Describing Software Architecture
Styles Using Graph Grammars," |IEEE Trans. On
Software Engineering, 1998, pp 521-533.

Mosaic web site (source codes and documents):
http://mww.ncsa.uiuc.edw/ SDG/Software/Mosaic

[17]

(18]

[19]

(20]

[21]

(22

(23]

[24]

[25]

[26]

N. Nilson, “Principles of Artificia
Morgan Kaufmann Publishers, Inc., 1980

Intelligence”,

K. J. Ottengtein, and L. M. Ottenstein,. “The Program
Dependence Graph in a Software Development
Environment”, Procealings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments,
1984.

V. Ralich, “MSE: A Methodology for Software
Evolution”, Journa of Software Maintenance Val. 9,
1997, pp.103-124.

V. Rajlich, “A model for Change Propagation Based on
Graph Rewriting”, Proceadings of ICSM’97, Bari, Italy,
October 1997.

V. Rajlich, "Theory of Data Structures by Relational and
Graph Grammars," In Automata, Languages, and
Programming, Lecture Notes in Computer Science 52,
Springer Verlag, Berlin, 1977, pp. 391-511.

A. Von Mayhauser and A. Vans, “Progam
Understanding Processes During Corrective
Maintenance of Large Scale Software’, Procs.
International Conference on Software Maintenance ' 97,
Sept. 1997, Bari, Italy, pp 12-30.

A. Von Mayhauser and A. Vans, “Program
Understanding Behavior During Enhancement of Large-
scale Software’, Journd of Software Maintenance:
Research and Practice Val. 9, pp 299-327 (1997).

N. Wilde and T. Gust, “Locating user functionality in
old code”, Proceadings of Conference on Software
Maintenance 1992, Orlando, Florida, 1992, pp. 200-205.

N. Wilde, Michad Scully, “Software Reconnaissance:
Mapping Progam Features to Code”, Software
Maintenance: Research and Practice, Vol. 7, 4962
19%.

S.S Yau, RA. Nichol, JJ Tsa and S Liu, “An
Integrated Life-Cycle Model for Software
Maintenance”, IEEE Trans. Software Engineering,
15(7), 1988, pp 5895.

Appendix A: Sear ch for window opening

Inspedion of the function main() reveals that it cdls
several other functions, but only mo_do_gu() is
relevant to aur task, because it isthe real main routine of
the application. Other functions are small functions,
used for exception handling, new process creation,
socket communication initiation, and it is unlikely that
they would deal with window opening.

www.manaraa.com

Function mo_do gui() does not ded with the
window opening, but calls diredly the functions

mo_open_initial_window() and
XtVarGetApplicationResources(), and accesses several
global variables. The function

mo_open_initial_window() seems to goen a window
diredly or indiredly, so it isthe next visited function.

Function mo_open_initial_window() sets a timeout
that cdls fire_er_up() after 10 milliseonds. We guess
that fire_er_up() does the actua work.

Definition of function fire_er_up() is not obvious,
but after macro expanson the definition of
XmxCallback(fire_er_up) is actualy the definition of
fire_er_up(). It cdls mo_open_window() with the home
document URL as the agument.

Function mo_open_window() opens a window and
views a given URL. This completes the first part of the
search.

Appendix B: Search for mappings

Function mo_open_window() cals
mo_make window() to make a window from scratch.
Function mo_make window() creates an X window
shell and then cdls mo_open window_interna() to
open abrowser window.

Function mo_open_window_internal() credes a
structure of type mo_window, calls mo_fill_window(),
and adds this window to the window li st.

Function mo_fill_window() takes the structure and
fill s in data values, for example title, menu credion and
setting. It cdls svera functions of X window library
and also sets up the menu bar and pulldown menus. For
every item in the pulldown menus, such as, “New
Window”, it spedfies the cdlback function as
menubar_cb().

The definition of XmxCallback (menubar_ch) in the
source @de is actually the definition of menubar_cb()
after macro expanson. This function cdls a processng
function for each menu item. We choose to search
function mo_open_another_window(), which is
matched to menu item “New window”.

This function opens a new window and loads the
default document into it. It cdls
mo_open_another_window_internal() which cdls
mo_make window() that was visited before. Hence we
have to backtrack andtry another branch.

We backtrack to menubar _cb() and try another
diredion: menu item “Reoad Config Files’ and the
related function mo_re_init_formats().

Function mo_re init_formats() is a smple function
that cdls function HTRel nit(), which in turn cdls three
functions: HTFormatInit(), HTFilelnit() and
HTList.c::HTList_delete(). Of the three functions,
HTList.c::HTList_delete() isused to deletealist and is

unrelated to aur goals. The remaining two functions will

be inspeded.
Function HTFormatlnit() cdls
HTLoadTypesConfigFil &) twice and

HTSetPresentation() many times. Every time
HT SetPresention() is called, it sets a default mapping
between one MIME type and its processng program. In
the source ®de, total of 38 default mappings are set.
Most of them are cmmonly used peirs of MIME type
and their processng programs. Function
HTLoadTypesConfigFile() is cdled twice with global
variable personal_type map and global_type map
respedively. From the name of function and dobal
variable, we infer that they establi sh persona and globel
type mapping, respedively. The alling sequence is
default mapping firg, then gobal mapping, and then
persona mapping. This cdling sequence deddes the
precalence of the three mappings. Global boolean
variable use default_type map deddes whether we cll
default mappings or not.

Function HTSetPresentation() adds one more
mapping to the mapping list. This mapping is between a
MIME type and its processng program.

Inspeding further HTLoadTypesConfigFile(), we
find it reads type mapping fileline by line and creates or
updates mappings between file types and processng
programs.

Inspedion of HTFormatinit() and the functions it
calls reveals that they establish the mappings between
the file MIME types and their processng programs.

We &ped it establish the mapping between
extenson and MIME type. Inspedion reveals that
Function HTFilelnit() has the similar working
mechanism as HTFormatinit(). It cdls function
HTL oadExtensionsConfigFile() twice and function
HT SetSuffix() many times. Every call to HTSuffix()
sets a default mapping between one etension and its
MIME type. Function HTLoadExtensionsConfigFil&() is
caled twice with global variable
personal_extenson_map and global_extenson map
respedively. From the name of function and dobal
variable, we think they establish personal and global
extension mappings, respedively. The alling sequence
is default mapping first, then global mapping, and then
persona mapping. This cdling sequence deddes the
precalence of the three mappings. Global boolean
variable use_default_extension_map deddes whether we
call default mappings or just skip them.

Function HT SetSuffix() adds one more mapping to
the mapping list. This mapping is between file extenson
to itsrelevant MIME type.

Inspeding further function
HTL oadExtensionsConfigFile(), we find it reads line
from extension mapping file and credes or updates one
mapping for every extension.

www.manaraa.com

Asthe result of this part of the search, we located six
functions HTFormatlnit(), HT SetPresentation(),
HTLoadTypesConfigFil &), HTFilelnit(),
HTL oadExtensionsConfigFile(), HTSuffix() that ded
with the mappings. The values of the mappings originate
from six global variables personal_type map,
global _type map, use default_type map,
persona_extension_map, global_extension_map and
use_default_extension_map.

Appendix C: Search for source of mappings

The six variables ae asdgned in function
mo_do_gui() by values of global data Rdata The
infformation flows to Rdata from function
XtVaGetApplicationResour ces() which is called by
mo_do_gu(). In this function call, variables “Rdata’
and “resources’ are two actual arguments. They store
the same MOTIF resource information in different
formats and the function converts the data between these

two formats. The data flow is direded from “resources’
to “Rdata’.

When we insped the data resources, we find all
default values of the six variables. So the six global
variables actudly get their default values from here.
Two macros and one environmental variable ae used to
spedfy the default values. They are macro
GLOBAL_TYPE_MAP, macro
GLOBAL_EXTENSION MAP, and environmenta
variable HOME are used.

Finally, the located components that implement the
feature @nsist of functions HTFormatlnit(),
HT SetPresentation(), HTLoadTypesConfigFil &),
HTFil elnit(), HTL oadExtens onsConfigFil &),
HTSuffix(), and variables persona_type map,
global _type map, use default_type map,
persona_extension_map, global_extension_map,
use default_extension_map, I esour ces, macros
GLOBAL_TYPE_MAP and
GLOBAL_EXTENSION MAP, and environmenta
variable HOME, seeFigure 4.

www.manaraa.com

